COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Wednesday, January 30, 2013

A 3D-study of the Pac-Man Nebula, NGC 281



This is an experimental test with a 3D-conversion of my astronomical images. I have published some animated GIF files, this time I have done a short movie out of the model. Even though this is just a looped tip tilt movie, I'm able to do any movements with this kind of model. 

Only real elements from my image are used, there is nothing added but the volumetric information!
NOTE. This is a personal vision about shapes and volumes, based on some scientific data and an artistic impression.

A 3D study of NGC 281


Movie is in natural colors

In YouTube you can see this image at a full screen and resolution:
(Click the gear symbol to select 720p )


Info about the technique used

My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.

I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...

The general structure of many star forming regions is very same, there is a group of  young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.

How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager. (Pun intended)


Original 2D-image
Only elements form this image are used for the animation above



A blog post about this new image of mine can be seen here:



NGC 281, the Pac-Man Nebula



A new image from the last week, NGC 281, I spend four nights imaging but the bad seeing and some thin upper clouds ruined majority of my frames. I managed to get enough exposures for two images, the Soul Nebula detail and this shot of Pac-Man Nebula.


NGC 281, in Cassiopeia
Ra 00h 52m 59.3s Dec +56° 37′ 19″

Image is in mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.
Star colors are shot with a QHY8 color camera, Tokina 300mm f2.8 optics and the Baader UHCs filter.
The open cluster  IC 1590 can be seen at middle of the image.

Buy a photographic print from HERE

Image is taken at 21. Jan. and there are 23x20min H-alpha light collected for it, color data is borrowed from my older image of the NGC 281. This is the third time for my tandem camera system, Star and natural color of the nebula are shot at the same time, as the closeup image, with the QHY8 color camera and the Baader UHCs-filter. This filter delivers real colors for the stars, even though it's kind of narrowband filter.


INFO

NGC 281 is an H II region in the constellation of Cassiopeia. It includes the open cluster IC 1590 and several Bok globules (dark doo-dads at center of the Blue area). NGC 281 is also known as the Pac-Man Nebula for its resemblance to the video game character from early 80's.
NGC281 spans over 80 light years at its estimated distance of 9500 light years.


An experimental 3D study of NGC 281

This is a link to a 3D-movie, please, have a look:


NGC 281 in visual colors

Image is in visual spectrum and dominated by the red light emitted by ionized Hydrogen, H-alpha. Blueish hues are from ionized Oxygen, O-III. Colors are shot simultaneously with H-a emission by using QHY8 color camera, Tokina AT-X 300mm f2.8 camera lens and Baader UHCs-filter.

Buy a photographic print from HERE

A study about the shapes

Lines in the image are showing, how the pillar-like formations are all pointing to the source of solar wind and ionization, the open cluster  IC 1590, inside the Pack_man Nebula.

There are some denser material at tip of the pillar like formations and it's able to resist the radiation pressure from the open cluster IC 1590, at the middle of the nebula. Typically those tips are future homes for newly born stars, as well as dark globules seen in the image. The same open cluster is coursing  the ionization in Pac-Man Nebula by its radiation. each ionized element in the nebula emits light at the typical wave length.


Technical details:

Processing work flow:
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Levels, curves and color combine in PS CS3.

Optics, Meade LX200 GPS 12" @ f5
Camera, QHY9
Guiding, SXV-AO, an active optics unit, and Lodestar guide camera 12Hz
Image Scale, ~0,8 arc-seconds/pixel
24 x 1200s exposures for the H-alpha, emission of ionized Hydrogen = 8h

Optics and exposures used for colors

Tokina AT-X 300mm at f2.8
QHY8, a cooled single shot color camera
Baader UHC-s filter
Baader IR-cut filter
16x900s = 4h
Color channels for a mapped-palette image, O-III and S-II, are from an older image of mine.


A single unprocessed 1200 second frame of H-a emission

A single 20 min. frame, just calibrated and stretched. Imaged with the QHY9 camera, Baader 7nm H-alpha filter and Meade LX200 12" telescope.






Monday, January 28, 2013

A 3D-study of The Soul nebula detail



This is my new test with a 3d-conversion of my astronomical images. I have published some animated GIF files, this time I have done a short movie out of the model. Even though this is just a looped tip tilt movie, I'm abel to do any movements with this new kind of model. 

Only real elements from my image are used, there is nothing added but the volumetric information! 

A 3D study of IC 1848


Image is in mapped colors.
Pay attention to a transparent 3d-shapes, they usually are very difficult to animate.  

In YouTube you can see this image at a full screen and resolution:
(Click the gear symbol to select 720p )

Info about the technique used

My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.

I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...

The general structure of many star forming regions is very same, there is a group of  young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.

How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager. (Pun intended)

Original 2D-image
Only elements form this image are used for the animation above


A blog post about this new image of mine can be seen here:




Sunday, January 27, 2013

Soul Nebula detail, IC 1848



I was able to shoot through four nights at last week. Unfortunately three of those night was ruined by a bad seeing, FWHM around 7, and nearly invisible thin clouds ate out the weaker signals. However, I had enough good data for couple of new images, here is the first one, IC 1848.


A closeup of IC 1848, the "Soul Nebula"
Ra 02h 51m 36.24s Dec +60° 26′ 53.9"

Image is in mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.
Star colors are shot with a QHY8 color camera, Tokina 300mm f2.8 optics and the Baader UHCs filter.
The open cluster IC 1848 can be seen at upper right edge of the image. (Two bright stars surrounded by a group of dimmer stars.)

There are 14x20min H-alpha light collected for this image, color data is borrowed from my older wide field image of the Soul NebulaThis is the second time for my tandem camera system, Star colors are shot at the same time, as the closeup image, with the QHY8 color camera and the Baader UHCs-filter. This filter delivers real colors for the stars, even though it's kind of narrowband filter.


INFO

Soul Nebula, (Sh2-199, LBN 667) is an emission nebula in constellation Cassiopeia. IC 1848 is a cluster inside Soul Nebula. Distance is about 7.500 light years. This complex is a Eastern neighbor of IC 1805, the "Heart Nebula" and they are often mentioned together as Heart and Soul. 


A study about the apparent scale




IC 1848 in visual colors

Image is in visual spectrum and dominated by the red light emitted by ionized Hydrogen, H-alpha. Blueish hues are from ionized Oxygen, O-III. Colors are shot  simultaneously with H-a emission by using QHY8 color camera, Tokina AT-X 300mm f2.8 camera lens and Baader UHCs-filter. 


Orientation and colors

The area of interest is marked with a white rectangle. Mapped colors, in up most image, are from this one.


This UHCs filtered image was shot simultaneously with H-a emission by using QHY8 color camera, Tokina AT-X 300mm f2.8 camera lens and Baader UHCs-filter. 
Colors in visual color image, second from the top, are taken from this image, as well as the star colors in both versions.


Technical details:

Processing work flow:
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Levels, curves and color combine in PS CS3.

Optics, Meade LX200 GPS 12" @ f5
Camera, QHY9
Guiding, SXV-AO, an active optics unit, and Lodestar guide camera 12Hz
Image Scale, ~0,8 arc-seconds/pixel
15 x 1200s exposures for the H-alpha, emission of ionized Hydrogen = 5h

Optics and exposures used for colors

Tokina AT-X 300mm at f2.8
QHY8, a cooled single shot color camera
Baader UHC-s filter
Baader IR-cut filter
16x900s = 4h
Color channels for a mapped-palette image, O-III and S-II, are from an older wide field image.



A single calibrated 1200 second frame of H-a emission

A single 20 min. frame, just calibrated and stretched. Imaged with the QHY9 camera, Baader 7nm H-alpha filter and Meade LX200 12" telescope.







Saturday, January 12, 2013

A heavenly velvet, IC 405




A new image from the night of 10.01.


IC 405, the Flaming Star Nebula
In constellation Auriga

Colors are kind of "semi narrow band" in this image, since they are shot with QHY8 color camera and the Baader UHC-s filter.


This is a first time when I used two optics and the cameras at the same time.
H-a is shot with my old Meade LX200 12", Baader H-alpha filter and a cooled gray scale astrocamera, QHY9. 
Colors are shot at the same time by using a Tokina AT-X 300mm camera lens, Baader UHC-s filter and the cooled single shot color astrocam, QHY8. Tokina system was at back of the Meade telescope.

Image with Tokina AT-X 300mm camera lens, Baader UHC-s filter and QHY8 cooled color camera.
This image was shot at the same time as narrower field H-alpha shot with Meade LX200 12" and QHY9 astro camera.


INFO



IC 405 locates in constellation Auriga and it's an emission/reflection nebula. Reflection component can't be seen in my image, since I'm shooting only narrowband data and reflection part is broadband target.
Distance from Oulu, Finland, is about 1500 light years. Nebula is about 5 light years across.


IC 405, mapped colors in HST-palette

Colors are mapped to a HST-palette, R=Sulfur, G=Hydrogen and B=Oxygen
Click for a large image.




Orientation
In a wider field image

The area of interest is marked with a white rectangle.



Wide field images of the area

A twelve panel mosaic of the constellation Auriga in HST-mapped colors.
Note. a largish image, 2.75MB and 2000x1100 pixels.
A blog post about this image, with technical details,  can be seen here: http://astroanarchy.blogspot.fi/2012/03/auriga-panorama-gets-bigger-12-panels.html



A central portion of the mosaic above.



Technical details:

Processing work flow:
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Levels, curves and color combine in PS CS3.

Optics, Meade LX200 GPS 12" @ f5
Camera, QHY9
Guiding, SXV-AO, an active optics unit, and Lodestar guide camera 5Hz
Image Scale, ~0,8 arc-seconds/pixel
12 x 1200s exposures for the H-alpha, emission of ionized Hydrogen = 4h

Optics and exposures used for colors
Tokina AT-X 300mm at f2.8
QHY8, a cooled single shot color camera
Baader UHC-s filter
36x300s = 3h

Color channels for HST-palette image, O-III and S-II, are from an older wide field image.



Friday, January 11, 2013

NGC 1491, the project finalized



I was able to finalize this imaging project since I found an older wide field color image of mine from this area.
I used colors from this wider field image and it seems to work fine. naturally the resolution is much lower in other than H-alpha channel but it doesn't harm the image too much since there are not much details in O-III and S-II channels in this case.



NGC 1491
in constellation Perseus


Colors are mapped to a HST-palette, R=Sulfur, G=Hydrogen and B=Oxygen
Click for a large image.




INFO


NGC 1491 is an emission nebula, in the constellation Perseus, at the distance of about 10700 light years. The ultraviolet light from the newly born stars makes elements in the nebula glow. There is an an 11th magnitude star in its center.  The solar wind, a radiation pressure, from the central star is blowing a bubble in the gas surrounding it. This is a dim one, seven hours of exposures was barely enough to reveal it.



A closeup

Click for a large image.



NGC 1491 in natural colors
Combined from the emission lines of H-a, S-II and O-III

Natural color composition from the emission of ionized elements, R=80%Hydrogen+20%Sulfur, G=100%Oxygen and B=85%Oxygen+15%Hydrogen to compensate otherwise missing H-beta emission. This composition is very close to a visual spectrum. 


A wide field image
Shot at Spring 2012

This image is used as a source for color information. The are of interest is marked with a white rectangle
The large nebula at center is Sharpless 205 (Sh2-205), NGC 1491 can be seen at upper left corner..

Some info about the wide field image

 This Sharpless object is very dim and difficult to shoot (as they usually are). The bright, peanut shape, area at middle is known as Sh2-205, bright nebula, at top left, is NGC 1491. Image spans about 5,5 degrees horizontally, that's 11 full Moons side by side. There are very few images around out of this object. Total exposure time, with a fast 200mm f1.8 optics, is 12h from three nights between 28.01 - 02.02. 2012.



Technical details:

Processing work flow:
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Levels, curves and color combine in PS CS3.

Optics, Meade LX200 GPS 12" @ f5
Camera, QHY9
Guiding, SXV-AO, an active optics unit, and Lodestar guide camera 5Hz
Image Scale, ~0,8 arc-seconds/pixel
21 x 1200s exposures for the H-alpha, emission of ionized Hydrogen = 7h
Color channels for O-III and S-II are from an older wide field image.




Ps.

A popular shape in our local universe

While processing the image, I noticed a familiar shape in the center portion of the image.
It seems to repeat itself in various targets. My guess is, that it's coursed by the solar wind from the open cluster usually locates in center of the emission nebula of this type.   

A collection of targets with same type of shapes as can be seen in center of the this new image.
The top most two images are from NGC 1491.





Tuesday, January 8, 2013

An emission nebula NGC 1491




A start of the new imaging project.
I'll shoot other two emission channels, needed for a color image, as soon as the weather allows.


NGC 1491
in constellation Perseus

NGC 1491 in H-alpha emission light


INFO

NGC 1491 is an emission nebula found in the constellation of Perseus at the distance of about 10700 light years. The ultraviolet light from the newly born stars makes elements in the nebula glow. There is an an 11th magnitude star in its center.  The solar wind, a radiation pressure, from the central star is blowing a bubble in the gas surrounding it. This is a dim one, seven hours of exposures was barely enough to reveal it.


A closeup

A detail from the center of the image above


A popular shape in our local universe

While processing the image, I noticed a familiar shape in the center portion of the image.
It seems to repeat itself in various targets. My guess is, that it's coursed by the solar wind from the open cluster usually locates in center of the emission nebula of this type.   

A collection of targets with same type of shapes as can be seen in center of the this new image.
The top most two images are from NGC 1491.



Technical details:

Processing work flow:
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Levels, curves and color combine in PS CS3.

Optics, Meade LX200 GPS 12" @ f5
Camera, QHY9
Guiding, SXV-AO, an active optics unit, and Lodestar guide camera 5Hz
Image Scale, ~0,8 arc-seconds/pixel
21 x 1200s exposures for the H-alpha, emission of ionized Hydrogen = 7h



An experimental starless image

A starless image to show only the actual nebula





Wednesday, January 2, 2013

Melotte 15 as an experimental 3D-study



I have done several 3D-studies out of my astronomical images. Models are based on some known scientific facts and an artistic impression. This is an approximation to the real structure of the nebula, an educated guess, it gives a feel to the object and an idea, what it must really be like.

There are several 3D-modes to see from the same material. Animated 3D, free view stereo pairs and an anaglyph Red/Cyan 3D.



An animated 3D-study of Melotte 15
Please, let the animation load to see a smooth movement

Note. A largish file, 6.7MB
There are nothing else used than a real image elements from the original 2D-shot!



An original image used for the 3D-model

The blog post about the Melotte 15, with a technical details, can be seen here:
http://astroanarchy.blogspot.fi/2012/12/melotte-15-in-ic-1805-project-finalized.html


An other version of the animated 3D
An experiment with a zoom effect

Note. A largish file, 6.7MB


Free view stereo pairs
Viewing instructions

For a Parallel Vision method

Click for a large image


For a Cross Vision method

Click for a large image



An anaglyph Red/Cyan 3D
Pair of Red/Cyan eyeglasses are needed to see this 3d-image!
(Red and Blue filters will do the trick, red goes to left eye.)

Click for a large image



Ps.

All my 3D-studies, stereo pairs and an anaglyph 3D, can be found here:

Animated versions are here:




Astro Anarchy gets published, a public Slide Show




My works are selected as a public content for a pedestrian zone in my home town Oulu, Finland.
There is a very large display unit at the end of the zone, 5.12 x 3.2 meters (over 16 x 10 feet). Five different sets of my astronomical photographs are running there as a slide show at January 2013.

Astronomical images in a giant public display
January 2013


All my images can be seen in my portfolio, please have a look:
http://astroanarchy.zenfolio.com/


Tuesday, January 1, 2013

Autumn season 2012 images in 54 seconds, the movie



I made a short still motion movie out of my astronomical images from the Autumn season 2012.


The Movie
Autumn season 2012


Click to play

All my astronomical images are in the portfolio, please have a look:
http://astroanarchy.zenfolio.com/

You are welcome to follow my work in Facebook:
https://www.facebook.com/jp.metsavainio