COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Vieraile portfoliossani

Wednesday, January 7, 2009

QHY9 8,6mb cooled astro camera

My new B&W astro camera is now under testing.
So far it looks like a winner!
Information about the camera: http://www.qhyccd.com/QHY9.html
The KAF8300 sensor is not known for low noise,
I was litle worried about it.
After first tests I can say, the noise is not a problem.
Cooling in this camera is very good.
-
I tested the cooling with ambient temperature of -10C.
It took about 60s. to reach maximum cooling, -60C,
and I was uning about 95% of the maximum cooling power.
-
Here is the QE of the camera (The Green line):

Main Features Total pixel : 3448*2574 (8.9mega pixel) Active pixels: 3358*2536 (8.6mega pixel) Pixel Size: 5.4um*5.4um FullWell: 25.5Ke- Imager Size : 19.7*15.04mm 4/3inch Readout noise: TBD(Appox 10e maybe) Preview Speed: 3Mpixel/s (3sec download time) Download Speed: 1Mpixel/s (9sec download time) Peak QE: 56% @540nm 48%@Ha Microlensing on chip ABG: 1000X 16bit ADC with CDS and Preamp USB2.0 High Speed interface Build in 32MBytes SDRAM buffer Support Binning: No Bin, 2*2,3*3,4*4 Communication port to QHY color wheel Improved 2-Stage TEC cooling -50 from ambinet Improved Heat Sink For KODAK CCD Build in Temp sensor and 16bit high presion ADC DC103 DC adapter & TEC Controller, Regulated Build in Mechanical shutter for Full Frame CCD Fully Airproof with Two 4.0mm Air Socket Weight: 510g Deep Cooling DC103 DC adapter & TEC controller Single voltage Input: +12V Output +-15V +5V to CCD PWM TEC controller: 0V-12V to TEC Single Cable connection with QHY2PRO Accquire Temp sensor information For more informations please visit discuss forum http://qhyccd.com/ccdbbs/index.php?topic=989.0

-

Some quick and dirty first test images.

Note! NO DARKS are used, only flats and BIAS, 7nm Baader H-alpha filter.

Images are scaled down 50%.

Rosette Nebula. 2 x 10 min with Canon 200mm EF f1.8L lens and QHY9. NO Darks

Extremely dim supernova remnant in Taurus. Only 5 x 10min Canon 200mm EF f1.8L lens and QHY9, NO Darks
California Nebula, 2 x 10min Canon 200mm EF f1.8L lens and QHY9. No Darks
-
Please Note!
Images here are just a very quick test.
The lens was manually focused, and at f1.8 it's not possible to do accuratetly,
all the images are somehow soft for that reason.
No sharpening or noise reduction was used, just stretching.
-
The camera has a small pixel size, 5,4 microns.
That gives me resolution of 5"/pixel with 200mm Canon lens.
With 300mm Tokina it will give about 3"/pixel.
Under sampled? yes a litle, but with my seeing conditions not actually at all.
With those lenses I can have both, high resolution and wide field!
-
With longer focal lenght, like my LX200 GPS 12", the camera can be binned down 2x2.
It will give resolution of about 1"/pixel. Doe the fact, that the camera has 8,6mb,
image has enough resolution after binning.

2 comments:

Ralph said...

I recently came across your blog and have been reading along. I thought I would leave my first comment. I don't know what to say except that I have enjoyed reading. Nice blog. I will keep visiting this blog very often.


Ruth

http://systemmemory.info

J-P Metsävainio said...

Thanks Ruth!

J-P